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Outline

• Validation via tolerance bounds

• Features of Bayesian model validation

• The six steps of the framework

• Generalizations

• Illustrations using computer models for spot welding

and for vehicle crashes
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Tolerance Bounds

Instead of asking “Is the model correct?∗”, we recommend

routinely reporting tolerance bounds for predictions.

Example 1: With probability 80%, the model prediction 5.17

(at specified input x) will be within ±0.44 of the true process

value (at input x).

Example 2: With probability 80%, the model prediction 6.28

(at specified input x∗) will be within ±1.6 of the true process

value (at input x∗).

∗a question that can be addressed, but which is usually irrelevant.
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This simple reporting device overcomes the difficulties

that

• it is often impossible to adequately characterize the

regions of model accuracy and inaccuracy;

• the degree of accuracy that is needed can vary from

one application of the computer model to another;

• it is usually crucial to incorporate model bias, as well

as variance, in assessment of accuracy.

4



Features of Bayesian Model Validation

• It can incorporate all types of uncertainty; from

uncertainty in model inputs or parameters to

uncertainty in the data to uncertain expert opinion.

• It can be implemented even if data (model-run data

and/or field data) is very limited.

• The model-run and field data can be observed at

different input values.

• One can ‘tune’ unknown parameters of the computer

model based on field data, and at the same time

apply the validation methodology.
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• Analysis of model bias is included – indeed, is central.

• The analysis is naturally sequential, allowing

updating as new information arrives.

• Optimal predictions involve a synthesis of data-driven

and model-based prediction, with each contributing

most in the domain where it is most powerful.

• The methodology includes development of a fast

‘response surface’ approximation to the computer

model, with computed accuracy.

• Prediction for a ‘related situation’ is possible.
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Philosophy and Caveats

• Validation is a hard problem which requires

sophisticated statistical methodology.

• Incorporation of physical knowledge is often crucial

in model validation but, without field data,

validation will always be suspect.

• The methodology we propose needs extension to

– stochastic computer models

– large dimensional input spaces

– large numbers of unknown model parameters

– large data sets
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Sketch of the Framework

Step 1. Specify model inputs and uncertain model

parameters with associated uncertainties or ranges – this

is called the Input/Uncertainty (I/U) map.

Step 2. Determine evaluation criteria.

Step 3. Design experiments and collect data (field and

computer-run).

Step 4. If the computer model is slow, develop a fast

(response surface) approximation.
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Step 5. Analyze and compare computer model output

and field data, involving

– statistical modelling of field data error;

– tuning/calibrating model input parameters based on

the field data;

– updating uncertainties in parameters, given the data;

– assessment of model bias;

– computing the tolerance bounds for prediction.

Step 6. Feedback information into the current validation

exercise and feed-forward information into future

validation activities.

9



Testbed 1. Resistance Spot Welding

• Key process inputs include

– the load, L, applied to copper electrodes;

– a direct current of magnitude C;

– material type and surface.

• The thermal/electrical/mechanical physics of the

spot weld process is modeled by a coupling of partial

differential equations, implemented in a finite

element computer model using ANSYS.

• The key unknown in the computer model is u, the

resistance of the faying surface.
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Figure 1: Resistance spot welding process
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Step 1. Specify the Input/Uncertainty (I/U) Map

• The I/U map has four attributes:

1) a list of key model features or inputs;

2) a ranking (1-5) of the importance of each input;

3) uncertainties, either distributions or ranges of

possible values, for each input;

4) current status of each input describing how the

input is currently treated in the model.

• The I/U map is ideally created during the model

development process.

• The I/U map is dynamic, and frequently updated.
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INPUT IMPACT UNCERTAINTY CURRENT

STATUS

Geometry electrode

symmetry-2d 3 unspecified fixed

cooling channel 1 unspecified fixed

gauge unclear unspecified 1, 2mm

materials unclear Aluminum (2 types fixed

× 2 surfaces)

Stress/ 4 unspecified fixed

strain piecewise linear (worse at high T)

C0, C1, σs 3 unspecified fixed

1/σ = u · f; f fixed 3 unspecified fixed by modeler

contact u = 0 tuned to data

resistance (electrode/sheet) 5 u ∈ [0.8, 8.0] for 1 metal

u =tuning (faying)

thermal 2 unspecified fixed

conductivity

current 5 no uncertainty controllable

load 5 no uncertainty controllable

mass density 1 unspecified fixed

specific heat 1 unspecified fixed

mesh 1 unspecified convergence/speed

numerical M/E coupling time 1 unspecified compromise

parameters boundary 1 unspecified

conditions fixed

initial conditions 1 unspecified fixed

Table 1: The I/U map for the spot weld model
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Step 2. Determine Evaluation Criteria, including

• specification of an evaluation criterion: for SPOT

WELD, the size of the nugget after 8-cycles;

• specification of the relevant domain of input

variables: for SPOT WELD,

– Material: Aluminum 5182-O and Aluminum 6111-T4

– Surface: treated or untreated

– Gauge (mm): 1 or 2

– Current (kA): 21 to 26 for 1mm aluminum; 24 to 29 for

2mm aluminum

– Load (kN): 4.0 to 5.3

– Resistivity u: 0.8 to 8.0
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Step 3. Design of Experiments and Data

Both computer and field experiments are typically crucial

in validation. For SPOT WELD:

• The computer experiments were designed to cover

the domains of the four key inputs, C = current,

L = load, G = gauge, and u = resistivity.

• The cost – thirty minutes per computer run –

resulted in a limited number, 52, of possible runs.

• A ‘space filling’ Latin Hypercube design was used.

• Field data consisted of previous lab experiments, 5

replicates at each of 12 input values.
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Step 4. Develop a Fast Model Approximation

• for employment in the field;

• for optimization over input variables;

• to find optimal designs for additional validation or

model-development experiments;

• for use in the Bayesian calibration and validation

methodology.

Notation for model output: yM(x,u), where

x is a vector of controllable inputs

u is a vector of calibration or tuning parameters.
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The GASP Model Approximation to yM(x,u)

• Fit a Gaussian spatial model to the model-run data.

• One can then compute

ŷM(x,u), the GASP model approximation

V M(x,u), the variance of the approximation.

Example: For SPOT WELD, at input (C, L, G, u) = (26, 5, 2, 4),

the GASP approximation is ŷM (26, 5, 2, 4) = 6.12, and its

variance is V M (26, 5, 2, 4) = 0.0046.

• The computations are of a Kalman-filter type.

• Fitting can be done by maximum likelihood (using

the GASP code of Walsh), or by Bayesian analysis.
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Figure 1. The GASP approximation, ŷM (x,u), to the spot

weld model yM (x,u). The dots are the model-run data.
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Some Technical Details

Defining z = (x,u), GASP has

• mean function Ψ(z)θ, where

– the basis functions Ψ = (Ψ1, . . . ,Ψk) are specified

– θ = (θ1, . . . , θk)
′ is unknown (and to be estimated)

Note: A constant mean is often satisfactory.

• covariance function, for the d-dimensional z,

Cov(z,z∗) = 1

λ

∏d
j=1

exp (−βj|zj − zj
∗|αj).

– The covariance ‘separability’ can greatly speed

computation and ‘fitting’ in high dimensions.

– Stochastic inputs can be handled very easily.
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Step 5. Comparison of model and field data:

calibration/tuning; estimation of bias; and

development of tolerance bands for prediction

The computer model is related to reality via

yR(x) = yM(x,u∗) + b(x) ,

where u∗ is the true (but unknown) value of u and b(x)

is the model bias. Field data at inputs x1,x2, . . . ,xn are

obtained, and modeled as

yF (xi) = yR(xi) + εF
i ,

where the εF
i are i.i.d. Normal(0, 1/λF ) random errors.
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Bayesian Analysis

• Specify prior probability densities for unknown elements

of the model,

– the density p(u) for u (from the I/U map)

– a density p(λF ) (precision of the measurement error)

– a prior density for the bias function b(x) (chosen to

be a smooth Gaussian process)

– prior densities for the unknown parameters in GASP.

• Utilize Bayes theorem to obtain the posterior density of

all unknowns, given the data. (Note that this automatically

incorporates all uncertainties in the problem.)

• Predictions and tolerance bounds follow easily.
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Calibration and Tuning

For SPOT WELD, Bayesian analysis yields the following

posterior density for u. The optimal ‘tuned’ value of u is

3.96, but it is much better to utilize the entire density.
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Predicting Reality Using a New Model Run

To predict the real process at some (new) input x, first

run the computer model, obtaining yM(x, û).

Model Prediction: If yM(x, û) is used directly as the

prediction, its variance, Vû(x), is available.

Bias-Corrected Prediction: Better is to estimate the

bias b̂û(x), and use the bias-corrected prediction

ŷR(x) = yM(x, û) + b̂û(x).

Example: In SPOT WELD, at input G=2, L=4.888, C=29.44,

and û = 3.96, the pure model prediction is ŷM = 7.16, with

variance V3.96 = 0.628. The estimated bias is b̂3.96 = 0.342, so

the bias-corrected prediction is ŷR(4.888, 29.44, 2) = 7.50.
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Predicting Reality Without a New Model Run

For SPOT WELD, and using only the GASP model approximation.
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Tolerance Bounds With a New Model Run

For SPOT WELD, at inputs G=2, L=4.888, C=29.44,

and û = 3.96,

• The pure model prediction was ŷM = 7.16, and the

corresponding 90% tolerance bounds are (6.02, 8.30).

• The bias-corrected prediction was 7.50, and the

corresponding 90% tolerance bounds are (6.15, 8.30).

Note: In bias-corrected predictions, both the new model-run

and the field data can be important. Indeed, model-runs

dominate locally (if, e.g., the effect of local changes are being

evaluated), while field data often dominates globally.
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Tolerance Bounds Without a New Model Run
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Uncertainty Decomposition
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The Bayesian Computation

• Utilizes a simulation method called Markov Chain

Monte Carlo.

• It is intensive, requiring thousands of iterations.

– If thousands of model runs are not feasible, the

GASP model approximation must be used.

– The simplifications arising from the specified form

of the covariance function can be important.

• Software for this approach to model validation is not

currently available.
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Generalization to Functional Data

Testbed 2. A Vehicle Crash Model. Collision of a vehicle with

a barrier is implemented as a non-linear dynamic analysis code

using a finite element representation of the vehicle. The focus is on

velocity changes at the driver seat, as in the following 30mph crash.
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Representation and Analysis of Functions

• Discretize t, and include as another model input in x.

• Assume all Gaussian process correlations involving t have

the same form.

• Then the separable form of the correlation functions

allows a major Kronecker product simplification in the

computation (because C−1

x,t = (Cx ⊗ Ct)
−1 = C−1

x ⊗ C−1

t ).

Example: For CRASH, a key evaluation criterion, CRITV, is

“driver seat velocity calculated 30ms before its displacement

reaches 125mm.” Discretize to the 19 time points

t = 1, 3, . . . , 15, 17, 20, 25, . . . , 65ms, with more smaller times

because of their importance in estimating CRITV.
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Posterior Densities for CRITV
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Estimates and 80% error bands for
SDM-velocity bias at 30km/h impact
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Extrapolating Past the Range of the Data

• The above methodology will tend to return large

tolerance bands in extrapolation, unless one just

‘assumes’ that bias estimates extrapolate.

• Less dogmatic is to model the new scenario as being

related – but not identical – to already studied

situations. This is done by hierarchical Bayesian

analysis, which is done here by assuming

– common smoothness and variances for the various

GASP approximations;

– mean structures arising from a common density;

– biases are related up to a ‘proportional variation’ q.
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For CRASH, the earlier analysis was for straight frontal

impact. Hierarchical modeling allows treatment of left angle,

right angle and center pole impacts. Here are the posterior

mean (standard deviation) for CRITV at a 56.3km/h impact

and with q = 0.1 (i.e., up to 10% variation in biases is

expected apriori).

Barrier type CRITV (model only) CRITV (bias-corrected)

left angle -6.08 (0.34) -6.34 (0.49)

straight frontal -5.13 (0.13) -5.22 (0.30)

right angle -6.89 (0.65) -6.80 (0.96)

center pole -6.55 (0.74) -6.54 (0.91)
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Pointwise 80% posterior intervals for bias, based on the hierarchical

model, when only previous model runs are utilized.
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Bayesian Determination of the Probability that

the Computer Model Is Correct

• Specify a prior probability, π0, that the computer

model, M0, is correct.

• Select an alternative model M1 (which here, will be

‘model + bias’).

• Specify prior densities for unknown parameters of

M0 and M1 (already done).

• Compute the posterior probability that M0 is correct

(which for CRASH, is essentially zero).
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